Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone.
نویسندگان
چکیده
To examine the role of adipose-resident macrophages in insulin resistance, we examined the gene expression of CD68, a macrophage marker, along with macrophage chemoattractant protein-1 (MCP-1) in human subcutaneous adipose tissue using real-time RT-PCR. Both CD68 and MCP-1 mRNAs were expressed in human adipose tissue, primarily in the stromal vascular fraction. When measured in the adipose tissue from subjects with normal glucose tolerance, covering a wide range of BMI (21-51 kg/m2) and insulin sensitivity (S(I)) (0.6-8.0 x 10(-4)min(-1).microU(-1).ml(-1)), CD68 mRNA abundance, which correlated with the number of CD68-positive cells by immunohistochemistry, tended to increase with BMI but was not statistically significant. However, there was a significant inverse relation between CD68 mRNA and S(I) (r=-0.55, P=0.02). In addition, there was a strong positive relationship among adipose tissue CD68 mRNA, tumor necrosis factor-alpha (TNF-alpha) secretion in vitro (r=0.79, P<0.005), and plasma interleukin-6 (r=0.67, P < 0.005). To determine whether improving S(I) in subjects with impaired glucose tolerance (IGT) was associated with decreased CD68 expression, IGT subjects were treated for 10 weeks with pioglitazone or metformin. Pioglitazone increased S(I) by 60% and in the same subjects reduced both CD68 and MCP-1 mRNAs by >50%. Furthermore, pioglitazone resulted in a reduction in the number of CD68-positive cells in adipose tissue and reduced plasma TNF-alpha. Metformin had no effect on any of these measures. Thus, treatment with pioglitazone reduces expression of CD68 and MCP-1 in adipose tissue, apparently by reducing macrophage numbers, resulting in reduced inflammatory cytokine production and improvement in S(I).
منابع مشابه
Metformin and Pioglitazone Reduce Gene Expression of Inflammatory Factors in Insulin Resistant and Hypertrophied Adipocytes
Objective: In obesity, chronic low grade inflammation, created by induction of pro-inflammatory markers, causes adipocyte dysfunction in adipose tissue. Adipocytes dysfunction is associated with various diseases including insulin resistance and obesity. In obesity, inflammatory factors such as osteopontin (OPN), angiopoietin-like protein 2 (Angptl2) and transforming growth factor-β (TGF-β) are...
متن کاملThrombospondin-1 is an adipokine associated with obesity, adipose inflammation, and insulin resistance.
OBJECTIVE We examined the relationship between the expression of thrombospondin (TSP)1, an antiangiogenic factor and regulator of transforming growth factor-beta activity, obesity, adipose inflammation, and insulin resistance. RESEARCH DESIGN AND METHODS TSP1 gene expression was quantified in subcutaneous adipose tissue (SAT) of 86 nondiabetic subjects covering a wide range of BMI and insulin...
متن کاملInsulin regulation of MCP-1 in human adipose tissue of obese and lean women.
CCL2 (MCP-1, monocyte chemoattractant protein 1) and CCL3 (MIP-1alpha, macrophage inflammatory protein 1alpha) are required for macrophage infiltration in adipose tissue. Insulin increases CCL2 expression in adipose tissue and in serum more in insulin-resistant obese than in insulin-sensitive lean mice, but whether this is true in humans is unknown. We compared basal expression and insulin regu...
متن کاملAntihyperglycemic effect of Rosa damascena is mediated by PPAR.γ gene expression in animal model of insulin resistance
Insulin resistance is a condition in which insulin signaling and action are impaired in insulin sensitive tissues and results in hyperglycemia, hyperlipidemia and type 2 diabetes mellitus. Our previous studies have shown that rosa damascena has antihyperglycemic effects on diabetic and normal rats. Therefore, we conducted a study to evaluate the effect of this medicinal plant on insulin sensiti...
متن کاملThe Association of Omentin Gene Expression in Visceral and Subcutaneous Adipose Tissues with Plasma Fatty Acids Profile and Dietary Fatty Acids
Introduction: Omentin, an adipokine, with anti-inflammatory effects reduces insulin resistance, and can hence, play an important role in prevention of cardiovascular disease and diabetes. The present study aimed to investigate the association of plasma and dietary fatty acids with gene expression of omentin in visceral and subcutaneous adipose tissues. Materials and Methods: Visceral and subcut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 54 8 شماره
صفحات -
تاریخ انتشار 2005